これまでxymatrixによる可換図式のテンプレートを書いた。その一連の記事は
Part I
Part II
Part III
である。これらは少し読みづらいと思う。こちらの記事の方が見やすいと思う。適宜参照しても構わない。
Part I
(0)
%(0): 基本 \documentclass{article} \usepackage[all]{xy} \usepackage{amsmath, amssymb} \begin{document} \[ \xymatrix{ A\ar[r]^f&B } \] \end{document}
(1)
%(1) \begin{equation} \xymatrix{ A\ar[r]^-{f}&B } \end{equation}
(2)
%(2) \begin{equation} \xymatrix{ A\ar[r]_-{f}&B } \end{equation}
(3)
%(3) \begin{equation} \xymatrix{ A\ar[r]|f&B } \end{equation}
(4)
%(4) Left Arrows \begin{equation} \xymatrix{ A&B\ar[l]^-{f}_-{g} } \end{equation}
(5)
%(5) Vertical Arrows \begin{equation} \xymatrix{ A\ar[d]^-{f}_-{g}\\ B } \end{equation}
(6)
%(6) \begin{equation} \xymatrix{ A\\ B\ar[u]^-{f}_-{g} } \end{equation}
(7)
%(7) Unique Arrows \begin{equation} \xymatrix{ A\ar@{.>}[r]^-{^{\exists !} f}&B } \end{equation}
(8)
%(8) Inclusion Maps \begin{equation} \xymatrix{ A\ar@{^{(}->}[r]^-{f}&B } \end{equation}
(9)
%(9) Monomorphisms \begin{equation} \xymatrix{ A\ar@{>->}[r]^-{f}&B } \end{equation}
(10)
%(10) \begin{equation} \xymatrix@M=8pt{ A\ar@{>->}[r]^-{f}&B } \end{equation}
(11)
%(11) Epimorphisms \begin{equation} \xymatrix{ A\ar@{->>}[r]^-{f}&B } \end{equation}
(12)
%(12) Identity Arrows \begin{equation} \xymatrix{ A\ar@{=}[r]^-{1_A}&A } \end{equation}
(13)
%(13) Isomorphisms \begin{equation} \xymatrix{ A\ar[r]^-{\simeq}_-{f}&B } \end{equation}
(14)
%(14) Assignments of Elements \begin{equation} \xymatrix{ x\ar@{|->}[r]&y } \end{equation}
(15)
%(15) Natural Transformations \begin{equation} \xymatrix{ F\ar@{=>}[r]^-{\tau}&G } \end{equation}
(16)
%(16) \begin{equation} \xymatrix{ \textbf{C}\ar@/^18pt/[rr]^-{F}\ar@/_18pt/[rr]_-{G}\ar@{}[rr]|{\Downarrow^\tau}&&\textbf{D} } \end{equation}
Part II
(18)
%(18) 2つの射 \begin{equation} \xymatrix{ A\ar[r]^-{f}&B\ar[r]^-{g}&C } \end{equation}
(19)
%(19) 合成射(Compositon) Case I \begin{equation} \xymatrix{ A\ar[r]^{f}\ar@/^18pt/[rr]^{h}&B\ar[r]^-{g}&C } \end{equation}
(20)
%(20) 合成射 Case II \begin{equation} \xymatrix{ A\ar[r]^-{f}\ar@/^18pt/[rr]|h&B\ar[r]^-{g}&C } \end{equation}
(21)
%(21) 合成法則(The Composition Law) \begin{equation} \xymatrix{ A\ar[r]^-{f}\ar@/^18pt/[rr]^-{g\circ f}&B\ar[r]^-{g}\ar@/_18pt/[rr]_-{h\circ g}&C\ar[r]^-{h}&D } \end{equation}
(22)
%(22) Case I: 0.5ex \begin{equation} \xymatrix{ A\ar@<0.5ex>[r]^-{f}\ar@<-0.5ex>[r]_-{g}&B } \end{equation}
(23)
%(23) Case II: 0.8 ex \begin{equation} \xymatrix{ A\ar@<0.8ex>[r]^-{f}\ar@<-0.8ex>[r]_-{g}&B } \end{equation}
(24)
%(24) 同型射(Isomorphisms) \begin{equation} \xymatrix{ A\ar@<0.5ex>[r]^-{f}&B\ar@<0.5ex>[l]^-{f^{-1}} } \end{equation}
(25)
%(25) Case I: 1.5 ex \begin{equation} \xymatrix{ A\ar[r]^-{f}\ar[d]_-{h}&B\ar[dl]^-{g}\ar@{}@<-1.5ex>[dl]|{\circlearrowright}\\ C } \end{equation}
(26)
%(26) Case II: 2.0 ex \begin{equation} \xymatrix{ A\ar[r]^-{f}\ar[d]_-{h}&B\ar[dl]^-{g}\ar@{}@<-2.0ex>[dl]|{\circlearrowright}\\ C } \end{equation}
(27)
%(27) Case III: 2.5 ex \begin{equation} \xymatrix{ A\ar[r]^-{f}\ar[d]_-{h}&B\ar[dl]^-{g}\ar@{}@<-2.5ex>[dl]|{\circlearrowright}\\ C } \end{equation}
(28)
%(28) 別の回転射(Another cicle arrow) \begin{equation} \xymatrix{ A\ar[r]^-{f}\ar[d]_-{h}&B\ar[dl]^-{g}\ar@{}@<-1.5ex>[dl]|{\circlearrowleft}\\ C } \end{equation}
(29)
%(29) Case I \begin{equation} \xymatrix{ A\ar[rr]^-{f}\ar[dr]_-{h}&\ar@{}[d]|{\circlearrowright}&B\ar[dl]^-{g}\\ &C& } \end{equation}
(30)
%(30) Case II \begin{equation} \xymatrix{ A\ar[rr]^-{f}\ar[dr]_-{h}&\ar@{}@<0.8ex>[d]|{\circlearrowright}&B\ar[dl]^-{g}\\ &C& } \end{equation}
(31)
%(31) Case III \begin{equation} \xymatrix{ A\ar[rr]^-{f}\ar[dr]_-{h}&&B\ar[dl]^-{g}\\ &C\ar@{}[u]|{\circlearrowright}& } \end{equation}
(32)
%(32) 3番目の配置 \begin{equation} \xymatrix{ A\ar[r]^-{f}\ar[rd]_-{h}\ar@{}@<2.0ex>[rd]|{\circlearrowright}&B\ar[d]^-{g}\\ &C } \end{equation}
(33)
%(33) 4番目の配置 \begin{equation} \xymatrix{ &B\ar[dr]^-{g}\ar@{}[d]|{\circlearrowright}&\\ A\ar[ru]^-{f}\ar[rr]_-{h}&&C } \end{equation}
(34)
%(34) 四角形の可換図式 (i) \begin{equation} \xymatrix{ A\ar[r]^-{f}\ar[d]_-{h}\ar@{}[rd]|{\circlearrowright}&B\ar[d]^-{g}\\ C\ar[r]_-{i}&D } \end{equation}
(36)
%(36) 四角形の可換図式 (ii) \begin{equation} \xymatrix{ &A\ar[ld]_-{f}\ar[rd]^-{h}\ar@{}[dd]|{\circlearrowright}&\\ B\ar[dr]_-{g}&&C\ar[dl]^-{i}\\ &D& } \end{equation}
(37)
%(37) 恒等射の法則(The Identity Laws) \begin{equation} \xymatrix{ A\ar[r]^-{f}\ar[d]_-{1_A}\ar[rd]|f\ar@{}@<2.5ex>[rd]|{\circlearrowright}\ar@{}@<-2.5ex>[rd]|{\circlearrowleft}&B\ar[d]^-{1_B}\\ A\ar[r]_-{f}&B } \end{equation}
(38)
%(38) モノイダル圏における五角形公理 \begin{equation} \xymatrix{ &&(A\otimes B)\otimes (C\otimes D)\ar[rrdd]^-{\alpha_{A, B, C\otimes D}}&&\\\\ ((A\otimes B)\otimes C)\otimes D\ar[rruu]^-{\alpha_{A\otimes B, C, D}}\ar[dd]_-{\alpha_{A, B, C}\otimes 1_{D}}\ar@{}[rrrrd]|{\circlearrowright}&&&&A\otimes ((B\otimes C)\otimes D)\\ &&&&\\ (A\otimes (B\otimes C))\otimes D\ar[rrrr]_-{\alpha_{A, B\otimes C, D}}&&&&A\otimes ((B\otimes C)\otimes D)\ar[uu]_-{1_A\otimes \alpha_{B, C, D}} } \end{equation}
(39)
%(39) モノイド対象における五角形公理 \begin{equation} \xymatrix{ &M\otimes(M\otimes M)\ar[rd]^-{1_M\otimes \mu}&\\ (M\otimes M)\otimes M\ar[ru]^-{\alpha_{M, M, M}}\ar[d]_-{\mu\otimes 1_{M}}\ar@{}[rr]|-{\circlearrowright}&&M\otimes M\ar[d]^-{\mu}\\ M\otimes M\ar[rr]_-{\mu}&&M } \end{equation}
Part III
(40)
%(40): 終対象(Terminal Objects) と 始対象(Initial Objects) An object $T$ in a category $\textbf{C}$ is called a \textit{terminal object} if for any object $A$ in $\textbf{C}$ there is a unique arrow from $A$ to $T$. Dually an object $I$ in $\textbf{C}$ is called an \textit{initial object} if for any object $A$ in $\textbf{C}$ there is a unique arrow from $I$ to $A$. \begin{align} &\xymatrix{ A\ar@{.>}[r]^-{t_A}&T } & \xymatrix{ I\ar@{.>}[r]^-{i_A}&A } \end{align}
(41)
%(41): 積(Products) Let $A$ and $B$ be objects in a category $\textbf{C}$. An object $P$ in a category $\textbf{C}$ is called a \textit{product} of $A$ and $B$ if there are arrows $A\overset{p_A}{\leftarrow}P\overset{p_B}{\to}B$ such that for any pair of arrows $A\overset{f}{\leftarrow}X\overset{g}{\to}B$ there is a unique arrow $\langle f, g \rangle: X\dasharrow P$ making the following diagram commutative: \begin{equation} \xymatrix{ &X\ar[dl]_-{f}\ar@{.>}[d]|{^{\exists !}\langle f, g \rangle}\ar[dr]^-{g}\ar@{}@<2.5ex>[ld]|{\circlearrowright}\ar@{}@<-2.5ex>[rd]|{\circlearrowleft}&\\ A&P\ar[l]^-{p_A}\ar[r]_-{p_B}&B} \end{equation} That is, $p_A\circ \langle f, g \rangle = f$ and $p_B\circ \langle f, g \rangle = g$.
(42)
%(42) 双対積(Coproducts) Dually an object $Q$ in $\textbf{C}$ is called a \textit{coproduct} of $A$ and $B$ if there are arrows $A\overset{q_A}{\to}Q\overset{q_B}{\leftarrow}B$ such that for any pair of arrows $A\overset{f}{\to}X\overset{g}{\leftarrow}B$ there is a unique arrow $\langle f, g \rangle: Q\dasharrow X$ making the following diagram commutative: \begin{equation} \xymatrix{ &X\ar@{}@<2.5ex>[ld]|{\circlearrowleft}\ar@{}@<-2.5ex>[rd]|{\circlearrowright}&\\ A\ar[ru]^-{f}\ar[r]_-{q_A}&Q\ar@{.>}[u]|{^{\exists !}\langle f, g \rangle}&B\ar[lu]_-{g}\ar[l]^-{q_B} } \end{equation} That is, $\langle f, g \rangle \circ q_A = f$ and $\langle f, g \rangle \circ q_B = g$.
(43)
%(43) イクワライザー(Equalizers) Let $A\overset{f}{\underset{g}{\rightrightarrows}}B$ be a pair of arrows in a category $\textbf{C}$. An \textit{equalizer} of $f$ and $g$ is a pair $(E, e)$ where $E$ is an object of $\textbf{C}$ and $e: E\to A$ is an arrow in $\textbf{C}$ with the following properties: \begin{enumerate} \item $f\circ e = g\circ e$ \item For any arrow $h: X\to A$ with $f\circ h = g\circ h$ in $\textbf{C}$, there is a unique arrow $\bar{h}: X\dasharrow E$ such that $e\circ \bar{h} = h$; i.e., the diagram below commutes: \begin{equation} \xymatrix{ E\ar[r]^-{e}&A\ar@<0.6ex>[r]^-{f}\ar@<-0.6ex>[r]_-{g}&B\\ X\ar@{.>}[u]^-{\bar{h}}\ar[ur]_-{h}\ar@{}@<2.5ex>[ur]|{\circlearrowright} } \end{equation} \end{enumerate}
(44)
%(44) コイクワライザー(Coequalizers) Dually A \textit{coequalizer} of $f$ and $g$ is a pair $(C, c)$ where $C$ is an object in $\textbf{C}$ and $c: B\to C$ is an arrow in $\textbf{C}$ with the following properties: \begin{enumerate} \item $c\circ f = c\circ g$ \item For any arrow $h: B\to X$ with $h\circ f = h\circ g$ in $\textbf{C}$, there is a unique arrow $\bar{h}: C\dasharrow X$ in $\textbf{C}$ such that $\bar{h}\circ c = h$; i.e., the diagram below commutes: \begin{equation} \xymatrix{ A\ar@<0.6ex>[r]^-{f}\ar@<-0.6ex>[r]_-{g}&B\ar[r]^-c\ar[rd]_-{h}\ar@{}@<2.5ex>[rd]|{\circlearrowright}&C\ar@{.>}[d]^-{\bar{h}}\\ &&X } \end{equation} \end{enumerate}
(45)
%(45) プルバック(Pullbacks) Let $A\overset{f}{\to}C\overset{g}{\leftarrow}B$ be arrows in a category $\textbf{C}$. A \textit{pullback} of $f$ and $g$ is an object $P$ in $\textbf{C}$ together with arrows $A\overset{p_A}{\leftarrow}P\overset{p_B}{\to}B$ in $\textbf{C}$ satisfying the following properties: \begin{enumerate} \item $f\circ p_A = g\circ p_B$ \item For any pair of arrows $h: X\to A$ and $k: X\to B$ with $f\circ h = g\circ k$, there is a unique arrow $l: X\dasharrow P$ such that $p_A\circ l = h$ and $p_B\circ l = k$; namely, \begin{equation} \xymatrix{ X\ar@/^10pt/[rrd]^-{k}\ar@/_10pt/[rdd]_-{h}\ar@{.>}[rd]_-{^{\exists !}l}\ar@{}@<-0.5ex>[rrd]|{\circlearrowright}\ar@{}@<-0.5ex>[rdd]|{\circlearrowright}&&\\ &P\ar[r]^-{p_B}\ar[d]_-{p_A}\ar@{}[rd]|{\circlearrowright}&B\ar[d]^-{g}\\ &A\ar[r]_-{f}&C } \end{equation} \end{enumerate} We denote a pullback $P$ of $f$ and $g$ by \begin{equation} \xymatrix{ P\ar[r]^-{p_B}\ar@{}[rd]|{\text{PB}}\ar[d]_-{p_A}&B\ar[d]^-{g}\\ A\ar[r]_-{f}&C } \end{equation}
(46)
%(46) プッシュアウト(Pushouts) Dually a \textit{pushout} of $f$ and $g$, where $A\overset{f}{\leftarrow}C\overset{g}{\to}B$ are arrows in $\textbf{C}$, is an object $P$ in $\textbf{C}$ together with arrows $A\overset{p_A}{\to}P\overset{p_B}{\leftarrow}B$ in $\textbf{C}$ satisfying the following properties: \begin{enumerate} \item $p_A\circ f = p_B\circ g$ \item For any pair of arrows $h: A\to X$ and $k: B\to X$ with $h\circ f = k\circ g$, there is a unique arrow $l: P\dasharrow X$ such that $l\circ p_A = h$ and $l\circ p_B = k$. That is, the following diagram commutes: ¥begin{equation} \xymatrix{ C\ar[r]^-{g}\ar[d]_-{f}&B\ar[d]^-{p_B}\ar@{}[ld]|{\circlearrowright}\ar@/^10pt/[rdd]^-{k}\ar@{}@<0.5ex>[rdd]|{\circlearrowright}&\\ A\ar[r]_-{p_A}\ar@/_10pt/[rrd]_{h}\ar@{}@<-0.5ex>[rrd]|{\circlearrowright}&P\ar@{.>}[rd]^-{^{\exists !}l}&\\ &&X } \end{equation} \end{enumerate} We denote a pushout $P$ of $f$ and $g$ by \begin{equation} \xymatrix{ C\ar[r]^-{g}\ar[d]_-{f}\ar@{}[rd]|{\text{PO}}&B\ar[d]^-{p_B}\\ A\ar[r]_-{p_A}&P } \end{equation}
僕から以上